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Abstract dependent Compton and photoelectric cross sections in LSO.
The light collection is assumed to be linearly dependent on the
distance of interaction from the photodetector, which has been
empirically found to be a good approximation [1]. More
precisely, the PD and PMT signals (in ADC counts) for an
ideal detector are given as a function of depth x by:

We have investigated two in situ calibration techniques
(using gamma rays incident from the patient side) for PET
detector modules that measure interaction depth via an analog
ratio. We need to determine two unknowns: the gain ratio K of
the two detector (PMT and PD) signals and the depth
dependence α of the signals (defined as the ratio of the signal
observed when the crystal is excited at the end closest to and
furthest from the detector). The depth dependence is assumed to
be linearly dependent on distance from the detector end, in
agreement with experimental results. The first method extracts
K and α using (a) the ratio of the PMT and PD signals for
interactions that occur in the detector end closest to the patient
(the most probable depth) and (b) the shape of the PMT pulse
height distribution which reflects the exponential attenuation
length in the detector. The second method utilizes the fact that
E=PD+PMT (the total energy estimator) is independent of
Γ=PD/(PD+PMT) (the depth estimator) when K is correct,
with a distribution position that is α dependent. Simulations
indicate that both the gain ratio and depth dependence can be
determined with an error of 3% rms and 2% rms respectively,
resulting in minimal degradation of energy and depth
resolution.
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where kpd  and kpmt are the gain factors that convert energy
deposition to ADC counts for each photodetector, E is the
energy deposit in the crystal, L is the crystal length, and α is
the depth dependence (defined as the ratio of the signal
observed when the crystal is excited at the end closest to and
furthest from the photodetector). Depth x is defined to be 0 at
the PD photodetector. Figure 2 shows these detector signals as
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Figure 1: Calibration geometry for a depth of interaction detector
module. An electronically collimated beam of annihilation
photons are incident from (a) the side of the detector module to
excite at a specified depth of interaction or (b) the patient side of
the detector module for in situ calibration.
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Figure 2: The PD and PMT detector signals, which are linearly
dependent on the depth of interaction (x ) from the photodetector.
The depth x  is defined to be 0 at the PD photodetector. Total
energy is the sum of PD and PMT.

I. INTRODUCTION

We have previously described the design for a PET detector
module that consists of an array of LSO crystals coupled on
one end to a photomultiplier tube and on the opposite end to
an array of silicon photodiodes [1]. We have calibrated this
prototype detector module using an electronically collimated
beam of annihilation photons incident from the side of the
detector to excite at a specified depth of interaction (figure 1a).
Others have suggested calibrating different depth-encoding PET
detectors using techniques similarly dependent on
measurements with side incident beams to provide a photopeak
pulse height versus depth look-up table [2-3]. However, using
side incident gamma rays is awkward for complete cameras
since recalibration is only possible by removing detectors
from the gantry.

We therefore investigate in situ calibration techniques (i.e.
those that utilize only gamma rays incident from the patient
side of the detector module such as in figure 1b) using a
Monte Carlo simulation that includes the measured electronic
noise, energy resolution, and signal levels, as well as energy
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a function of depth for an ideal detector, assuming noise free
readout, perfect energy resolution, and monoenergetic energy
deposition.

exponential (due to exponential attenuation in LSO), the PD
and PMT pulse height spectra also have exponential slopes.
The PMT spectrum has a clear peak at low pulse height bins,
corresponding to interactions at the patient end of the
scintillation crystal (x=0, the most probable depth). Because of
light sharing, interactions at x=L (i.e.  close to the PMT)
populate high pulse height bins. Ideally, we could use the four
edges of the spectra — PD(x=0), PD(x=L), PMT(x=0) and
PMT(x=L) — to extract the calibration constants using
equations (3) and (4).

The necessary calibration parameters are depth dependence
(α) and the relative gain of the PMT and PD (K). More
specifically,

 = 
PMT(x=L)
PMT(x=0)

 = 
PD(x=0)
PD(x=L)

(3)

K ≡ 
kpmt
kpd

 = 
PMT(x=L)
PD(x=0)

 = α 
PMT(x=0)
PD(x=0)

. (4)
For a realistic detector that includes electronic noise, finite

energy resolution, and Compton scatter (as in figure 4), we
can still identify the peaks corresponding to interactions at
x=0. However, it becomes difficult to accurately identify the
pulse height edges for the x=L interactions. Thus, we have
developed an algorithm to determine K and α using the x=0
peaks and the shape of the PMT spectrum.

In this paper we present two different in situ calibration
methods used to extract K and α.

II. SIMULATION

Monte Carlo data is used to simulate the performance of a
single LSO crystal coupled on one end to a silicon photodiode
and on the opposite end to a photomultiplier tube. Normally
incident 511 keV photons enter the crystal on the PD end and
interact in the crystal via Compton scattering and/or
photoelectric absorption, assuming energy dependent cross
sections in LSO. A 1.2 cm attenuation length (1/ ) of LSO is
assumed [4]. Since there is only a single simulated crystal,
Compton scattered photons that escape the crystal are lost.

For a realistic detector, Gaussian smearing of the PMT
pulse height spectrum rounds off the abrupt edges seen at x=0
and x=L in figure 3 and alters the exponential shape near these
x values. However, the shape is unaffected for 0.1L x 
0.9L. Thus the PMT pulse height spectrum is fit with an
exponential over a limited region — from 5% above the x=0
peak to 25% below the bin where the PMT spectrum tail first
goes to zero — in order to extract the slope m  (N =N0 exp(-b-
mPMT) = N0 exp(-x/ )). The PMT(x=0) peak is estimated by

The photodetectors are assumed to have a quantum
efficiency of 0.8 and 0.2 for the PD and PMT, respectively.
The detected signal is smeared by a Gaussian distribution to
simulate the affect of finite scintillator energy resolution. The
rms width of the Gaussian is proportional to the square-root of
the signal and the proportionality constant is chosen to match
observed energy resolution in LSO. This scintillator based
“noise” is summed in quadrature with the measured electronic
noise (190 electrons rms for PD and 0 for PMT detector). The
signal in terms of energy is multiplied by the gain factor kpd
(or kpmt) to give the signal PD (or PMT) in terms of ADC
bins. Thus, the total energy resolution at 511 keV is ~19%
fwhm with energy dependence; this is pessimistic compared to
the expected detector performance [1] but represents a worst
case scenario in terms of energy resolution. Calibration results
extracted with a smaller proportionality constant were found
not to affect the results. We want to extract the relative gain K
and calibrate so that 1 PMT ADC bin equals 1 PD ADC bin
after correction.
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Figure 3: The PMT and PD distributions simulated with α=3 and
K=1 for an ideal detector. Exponential attenuation (1/ ) is evident
for both PD and PMT distributions, as well as the edges
corresponding to x=0 and x=L.
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Figure 4: The PMT and PD distributions simulated with α=3 and
K=1 for a realistic detector. Exponential attenuation (1/ ) is
evident for the PMT distribution (to the right of its peak), as well
as the edges corresponding to x=0 .

III. EXPONENTIAL ATTENUATION METHOD

The light collection is linearly dependent on the depth, thus
the exponential nature of annihilation photon interaction in
the crystal is reflected in the exponential shape of the PMT
and PD pulse height spectra. The first calibration method that
we describe utilizes this exponential shape.

Figure 3 demonstrates the underlying data that is used for
the calibration. Consider 511 keV gammas that interact only
via photoelectric effect in a noise free detector. Interactions at a
single depth would appear as a delta function in the pulse
height distribution. As the distribution of interaction depths is
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the ADC bin with the maximum number of events. The
combination of the peak PMT(x=0) and exponential slope m
are used to extract alpha:

depth estimator (Γ=PD/(PD+PMT)) if the relative gain K is
correct. Figure 2 shows the PD, PMT, and total energy
detector signals as a function of true interaction depth for an
ideal detector with a correct relative gain of 1. Figure 7 shows
the total energy as a function of the depth estimator for an
ideal detector with either K=1 (figure 7a) or K=1.5 (figure 7b).

 = 1 + 
L

m   PMT(x=0)
 . (5)

The PD pulse height spectrum peaks for interactions
corresponding to x=0, which is also estimated by the ADC bin
with the maximum number of events. We can then obtain the
relative gain factor K from PMT(x=0) and PD(x=0) using
equation (4).
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Figure 5: The correlation between true and measured calibration
constants using the exponential attenuation method for (a) α and
(b) K.  The lines of slope 1 represent the desired values.
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Figure 6: The (a) total energy pulse height spectrum and (b) depth
of interaction distribution for both the true and measured
calibration constants. The curves are almost indistinguishable,
indicating minimal degradation in energy and depth resolution due
to calibration using the exponential attenuation method.

We need to correct for systematic errors, such as those
caused by the PMT(x=0) and PD(x=0) peak finding algorithm
(see figure 4). To obtain these correction factors, a data set of
20 runs was simulated with different (α,K) combinations and
200k events per run. The true (i.e.  input) α and K constants
ranged in value from 2–4 and 0.5–1.5 respectively to fully
cover the expected detector conditions. The nominal values are
α=3 and K=1. This calibration data set was used to measure
“raw values” of α and K with the exponential attenuation
method described above. We plot the measured raw versus true
values and fit a line for both α and K, providing correction
factors for future data sets.

To estimate the errors in this method, a second data set of
20 runs was simulated with 200k events each and the same
(α,K) combinations as in the calibration data set but with
different random seeds. The exponential attenuation method
was applied to each run, then corrected with the corresponding
α or K calibration line. Figure 5 shows the resulting
measurements for α and K as a function of the true values. A
line of slope 1 is also shown to represent the desired values.
Thus, we obtain α with a 3% rms error and K with a 2% rms
error using this method. In figure 6, the pulse height spectra
and depth of interaction distributions are shown when using
either the true or measured calibration constants. The
calibration errors cause only a minimal degradation of the
energy and depth resolution.

This technique uses only a crude estimation of the pulse
height peaks (PMT(x=0) and PD(x=0)) by using the bin with
the maximum number of events for each photodetector.
Clearly a more sophisticated fit for the peak region would give
a better estimation. In addition, the PMT spectrum should be
fit with an exponential after the Compton background has
been subtracted. However, our investigation showed accurate
slope extraction when fitting without subtraction. For speed
and simplicity, we choose not to fit the peaks or subtract off
the background since they weren’t necessary. A run of 200k
events is a very large sample when considering that we have
over 20000 crystals in need of calibration in our proposed PET
camera. However, we believe that this technique or a minor
variant will yield excellent results even with a smaller number
of events.

IV. CONSTANT ENERGY SUM METHOD

The second calibration method utilizes the fact that the
total energy estimator (E=PD+PMT) is independent of the
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Figure 7: The total energy estimator E=PD+PMT as a function of
the depth estimator Γ=PD/(PD+PMT) for an ideal detector with
α=3 and (a) a correct relative gain of K=1 or (b) an incorrect gain
of K=1.5. Total energy is independent of Γ if the gain is correct.

Figure 8: The total energy estimator E=PD+PMT as a function of
the depth estimator Γ=PD/(PD+PMT) for a realistic detector with
α=3 and (a) a correct relative gain of K=1 or (b) an incorrect gain
of K=1.5. Total energy is independent of Γ if the gain is correct.
The crosses indicate photoelectric events and the dots are
Compton scatter events, as determined by an expectation
maximization technique. The white lines are a fit of only
photoelectric events (used to extract K).

A clear dependence on Γ is observed when the gain is
incorrect, whereas the total energy is flat when the gain is
correct. Thus we can estimate K from the slope of E as a
function of Γ. Figure 7 also shows that the total energy
position  is a function of the calibration constants; the line is
centered for correct gain (figure 7a) and shifts to the left for
K>1 (figure 7b). More precisely, the upper edge is given by

(x=0 = 
α

α+K
 . (6)

Thus we can extract the calibration constant α by measuring
the upper edge Γ(x=0) once we have determined K. The same calibration data set used to measure α and K

with the exponential attenuation method (described previously)
was used for the constant energy sum method. However, only
the first 20k events per run were used because of the
computation time required by the expectation maximization
algorithm. There are systematic errors such as the position of
the Γ(x=0) peak, but the calibration results show a correlation
between the measured raw values and the true values. We plot
the measured raw versus true values and fit a line for both α
and K, providing correction factors for future data sets.

For a realistic detector that includes electronic noise, finite
energy resolution and Compton scatter, the lines in figure 7
become a scatter plot of E verses Γ but still demonstrate
independence of Γ if the gain is correct (figure 8). Figure 8
also shows an excellent separation between photopeak and
Compton scatter events for both correct and incorrect gains. In
order to properly extract K from the scatter plot for a realistic
detector, we select only the photopeak events using an
expectation maximization technique [5]. We model the
probability densities of the events in the variables Γ and E as a
mixture of two Gaussian functions and classify each event
according to Bayesian inferencing [6]. The white line in figure
8b, corresponding to the average E as a function of Γ for
photopeak events only, is a shifted hyperbola. Thus rather
than fitting E, we make a linear fit of the inverse of E. We
extract K from the slope and intercept of this line, giving an
excellent fit for photopeak events as seen in figure 8. We are
able to observe a clear upper edge Γ(x=0) for all K values.
This edge is determined by histograming Γ and estimating the
peak by the bin with the maximum number of events. We can
then determine α from both K and Γ(x=0) using equation (6).

In order to estimate the errors, the constant energy sum
method was applied to the same test data set used for the
exponential attenuation method but using only the first 20k
events. These measured raw values of α and K were then
corrected with the corresponding α or K calibration line.
Figure 9 shows the resulting measurements for α and K as a
function of the true values. Thus, we obtain α with a 14%
rms error and K with a 4% rms error using this method.
Although the rms error for α is much larger for this method
when compared to the previous method (with 2% rms for α),
the calibration errors cause only a minimal degradation of the
energy and depth resolution (figure 10).
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Figure 9: The correlation between true and measured calibration
constants using the constant energy sum method for (a) α and (b)
K.  The lines of slope 1 represent the desired values.
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Figure 10: The (a) total energy pulse height spectrum and (b) depth
of interaction distribution for both the true and measured
calibration constants. Excellent agreement is seen, indicating
minimal degradation in energy and depth resolution due to
calibration using the constant energy sum method.

constants. We obtain the depth dependence (α) with a 3% rms
error and the relative detector gain (K) with a 2% rms error
using this exponential attenuation method. In the second
method we select photopeak events and fit the total energy
versus depth estimator (Γ) shape to extract K; we then
determine α from both K and the upper edge Γ(x=0). We
obtain the depth dependence with a 14% rms error and the
relative detector gain with a 4% rms error using this constant
energy sum method. The larger errors in the constant energy
sum method may be due to the smaller number of events (20k
vs. 200k). However, both calibration techniques cause only
minimal degradation of the energy and depth resolution so they
are both viable options for in situ calibration. These methods
depend on the ratio of two detectors to give depth information,
but they can be applied to many types of detectors. One could
also apply similar methods to designs using only one detector
in order to calibrate or verify depth information.
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